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Introduction Results

« Hemispheric asymmetry Is different in Alzheimer brains than in normally
aging brains. [1,2] This could help to understand the structural changes in
Alzheimer’s disease better.

* Univariate analysis:
* no differences between the groups

 Multivariate analysis:
* Relevant clusters for hemispheric classification found =2 Biggest
clusters of the Boruta feature selection per group:

M CN (2490 Vox.) | EMCI (2614 Vox.) | MCI (1734 Vox.) | LMCI (2334 Vox.) | AD (2142 Vox.)
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Alzheimer’s disease iIs still often diagnosed at a late stage > Early
detection markers are important. [3] Classical biomarkers are measured

with amyloid PET and CSF. Hemispheric asymmetry could help to find
additional structural early detection markers. These would be Initially
avallable to more patients.
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M = Mean age per group o _
n = group size AgeDistribution

Group abbreviations: * In AD more clusters and smaller clusters compared to CN - they
spread more globally from CN to AD

wm AD = Alzheimer‘s disease

AD | : | [ | | CN = Cognitively normal
n=116 | | | RN I HTAY - L MCI = Mild Cognitive Impairment
M=745,5 EMCI = Early MCI

M& LMCI = Late MCI
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I ‘ ' ' ' LEEL &2 ez  Results of the diagnosis classifications of CN and AD
M=759,32

- (g V4

LMCI | 1 : | YN e > 8 ’Y‘ ' (Features 15907) (Features 8156)
nf105 i é‘ '; ‘% '%' Mean Test Score 0.86 Mean Test Score 0.63
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Test Accuracy: 0.86 Test Accuracy: 0.59
Precision Score (AD): 0.88 Precision Score (AD): 0.25

Symmetrical Template

250 600 650 700 750 800 850 900
n in total= 698 Age (in months)

* Univariate analysis:

 whole brain calculation of asymmetry index images [4]
 GLM between groups with TFCE correction, p=0.05
 Covariates: total brain volume, age and sex

Gray matter content Asymmetry index (Al)

(Features 223) (Features 111)

Mean Test Score 0.85 Mean Test Score 0.64
Test Accuracy: 0.84 Test Accuracy: 0.57
Precision Score (AD): 0.76 Precision Score (AD): 0.23

- | [T * Results of the diagnosis classifications of CN and MCI
) Sxrenar e | * GMV * GMV

(Features 15907)
* CN vs EMCI * CN vs. EMCI (Features 191)
Mean Test Score 0.57 Mean Test Score 0.56
Test Accuracy: 0.58 Test Accuracy 0.54
Precision Score EMCI:  0.64 Precision Score EMCI 0.46
* CN vs MClI * CN vs. MCI (Features 239)
Mean Test Score 0.82 Mean Test Score 0.78
J Test Accuracy: 0.75 Test Accuracy 0.72
O Rightward asymmetry Precision Score MCI: 0.70 Precision Score MCI 0.66
Leftward asymmetry * CN vs LMCI * CN vs. LMCI (Features 203)
H Leftward asymmetry (noise) Mean Test Score 0.71 Mean Test Score 0.62
Test Accuracy 0.69 Test Accuracy 0.69
Precision Score LMCI ~ 0.64 Precision Score LMCI 0.42

* Multivariate analysis:
« RandomForest Classification of the hemispheres per group and Boruta

feature selection of the relevant voxels [5] piscussion
- , No group differences in the univariate analysis could mean:
? % } Y \ k by « There are no differences.
 split > tip 1ot} \f@; \ 3 .5 ¢ = « The differences are too subtle to be detected with VBM after
ﬂ@ 3 .:;? . ?’, ] ?f LH | RH correction for multiple comparisons.
* ’;u,,,p &RH “,’-.; : ;& Classification
LH fip z|| RH.Z he multivariate analysis shows several clusters that are relevant
s ) = for the left vs. right decision. These are related to hemispheric
F & & 2’% RF + Boruta asymmetry which seems to differ between the groups of the AD
e '123’ ! e A continuum.
S v
Fi”n.pz Ff‘tﬂz TOSRNG NG | s | IOV YOXON he performance of those clusters in diagnosis classifications was

very similar to the whole brain = Only <1.5% of the features of the
whole brain was sufficient. This shows potential for AD as well as
MCI prediction in the ADNI dataset.

« Diagnosis classifications with Julearn [6] between the groups with the
GMV (gray matter volume) and the asymmetry index as features
 Model: support vector machine (svm), Confounds: age & sex
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